Coprological Examination of Ovine Fasciolosis in Horro District Community Based Sheep Breeding Program, Horro Guduru Wollega Zone, Western Ethiopia

Fanta Lule Bimirew¹, Tesfaye Mersha Cherinnat²*

¹Jimma University college of Agriculture and Veterinary Medicine
²Bako Agricultural Research Center

Abstract

A cross-sectional study was conducted from November 2017 to March 2018 to determine the prevalence of ovine fasciolosis in the Community Based Horro Sheep Breeding site at Horro district, Horro Guduru Wollega zone, Ethiopia. Coprological examination was performed on a total of 390 sheep at the study area. Age, sex, body condition score and peasant association were taken into consideration as risk factors. An overall prevalence of fasciolosis 45.4% [95% CI (40.41, 50.36)] was found on the basis of coprological examinations. The prevalence of fasciolosis findings according to PAs were (41.5%) in Laku Ingu and (48.2%) in Gitilo Dole. Statistical analysis of the prevalence among study site (PAs) showed insignificant difference P=0.102 (P>0.05), but significant difference (P<0.05) was observed between animal age groups (P=0.032, with a prevalence of 37.2% in young and 49.8% in adult) and body condition scores (P=0.001, with a prevalence of 57.9%, 43.5% and 29.9% in sheep with poor, medium and good body condition score, respectively. There was insignificance difference (P>0.05) in sex group of study animals in which the prevalence was 47.6% in female and 38.8% in male. Therefore further studies on the epidemiology, seasonal dynamic of the disease, the snail intermediate host and impacts of the infection in animal production with implementations of strategic intervention is necessary.
Introduction

Ethiopia is believed to have the largest livestock population in Africa with estimated population of 59.5 million cattle, 30.70 million sheep, 30.20 million goats, 2.16 million horses, 8.44 million donkeys, 0.41 million mules, and 1.21 million camels. The livestock sub-sector contributes about 12% of the total and over 45% of the agricultural GDPs. Small ruminants are the dominant livestock providing up to 63% of cash income and 23% of food substance value obtained from livestock production [1].

In Ethiopia, sheep is the second most important species with diverse breeds and ecotypes distributed from cool alpine climate of the mountains to the arid pastoral areas of the lowlands [2]. Small ruminants provide about 46% of the national meat consumption and 58% of the value of hide and skin production. They have many advantages over large ruminants for most smallholder farmers, including among others: less feed costs, easy management and appropriate size at slaughter [3].

However, the Country has rich potential from the livestock sector is not efficiently exploited due to several constraints including suboptimal nutrition, traditional management and most importantly high prevalence of diseases [4]. Endo-parasite infection and management problems are known to be the main factors that affect productivity. The various species of gastrointestinal and pulmonary nematodes, trematodes and cestodes are known to be prevalent in Ethiopia. Among the many parasitic problems of small ruminants, fasciolosis was found to be the major one [5].

The Fasciolosis occurs world-wide and causes substantial economic losses in animal production [6, 7]. Fasciolosis due to F. hepatica and F. gigantica was found to be prevalent and economically important in many parts of Ethiopia [8 & 9]. In Ethiopia, the prevalence of fasciolosis was reported to be in the rage of 11.5% to 87.0% in small ruminants (Incorporate reference). Fasciolosis was reported to cause significant economic loss associated to mortality, morbidity, reduced growth rate, condemnation of fluky liver, increased susceptibility to secondary infections and expenses for control measures [8].

In addition to its tremendous effects on livestock production and their productivity, fasciolosis also has a public health importance. It has been reported that currently, the number of humans thought to be infected is 2.4 to 17 million with further 180 million people being at risk for infection [10].

Diagnosis of fasciolosis is based primarily on clinical sign, examination of feces for fluke eggs, postmortem examination, identification of snail habitats and hematological tests [5]. Knowledge on the prevalence of the disease and associated risk factors as part of the epidemiology of the disease is crucial for any attempt of prevention and control of the disease in question. Estimation of the economic significance of the disease is important for decision making, planning, development and implementation of control strategies [7].

When these are evident on its endemicity in the country, there is no any assessment and report regarding the prevalence, and associated risk factors of ovine also the agro ecological condition of the area seems to be favorable for the parasite like communal grazing land using practice for all livestock in the area. Moreover, estimation of prevalence and associated risk factors of the disease is important for decision making, planning, development and implementation of control and prevention strategies. Therefore, the present study was carried out to investigate the prevalence of ovine fasciolosis in the Horro Sheep Breeding site in Horro district, Oromia regional state, Ethiopia; where sheep are important assets to the community and at the location that believed to be the home tract to the Horro sheep breed [11].

Therefore, the objectives of this study were: to estimate the prevalence of ovine fasciolosis, and to assess the associated risk factors at Community Based Horro Sheep Breeding site in Horro district, western Ethiopia.

Materials and Methods

Study Area

The study was conducted from November 2017 to March 2018 in Horro district, Horro Guduru Wollega zone, Oromia Regional state, west part of Ethiopia; at the sites of community based Horro sheep breeding
program of Bako agricultural research centers. Horro district is located 64 kms North West of Bako research center and 310 kms West of Addis Ababa. It lies at an altitude range of 1800 to 2835 m.a.s.l. and the area has one long rainy season extending from March to mid-October with mean annual precipitation of about 1800 mm with mean maximum, minimum and average annual temperatures of about 22.67, 11.75°C and 13.3°C, respectively [11]. Horro district consists of 37.89% highland, 54.75% mid altitude and 7.86% lowland [12]. The season is divided into three: the main rainy season (June-October), dry season (November-February) and short rainy season (March-May). In this study two PAs were included namely, Laku-Igu which has 66 small holder members, whereas Gitilo-Dole has 69 small holder members. The Horro sheep community based breeding program is carrying out in Horro district at the location that believed to be the home tract to the Horro sheep breed and mixed crop-livestock agriculture is the main stay of the farming communities.

Study Animal

The study animals were indigenous Horro Sheep breed. In the population there are animals of different age groups and body condition and sex groups. The animals were managed under extensive management system.

Study Design

A cross-sectional study was conducted from November 2017 to March 2018 in the selected study area to determine the prevalence of ovine fasciolosis.

Sample Size Determination and Sampling Method

The required sample size was calculated based on the expected prevalence of 55.7% according to the previous study at the neighbor district (Jimma Rare) by [13] and absolute desired precision of 5% at confidence level of 95% according to the methods provided [14].

The calculated sample size was 379; however in order to increase the accuracy, the numbers of sampled sheep have been elevated to 390 in this study for coprological examination. The study animals were randomly selected with no recent treatment history with anthelmintic.

Sampling Technique

Within the two PAs namely: Laku-Igu and Gitilo Dole where the community based Horro sheep breeding program is ongoing there, were selected by considering the population size of sheep in the area. Simple random sampling technique was the sampling strategy used to collect all the necessary data from fecal samples of the study animals. Therefore, out of the total 390 sheep selected for the study, 164 were from Laku-Igu and 226 were from Gitilo Dole. Table 1.

Potential Risk Factors

In this study PAs, sex, body condition and age are considered as animal risk factors. Body condition of each animal was determined based on the criteria set by [15]. However, for suitability, in this study sheep were classified into groups with poor, medium and good body conditions. The body condition was classified into three categories as poor (condition 1 and 2), medium (condition 3) and good (condition 4 and 5) in accordance with the score card given by [15]. Age was determined based on the dentition [16] and the owner’s information. In this study the age was suitably categorized as adults and young. Sheep up to the age of 1year was considered as young and the rest, as adult.

Sample Collection, Transportation and Examination

Fecal samples for parasitological examination

<table>
<thead>
<tr>
<th>Peasant Association</th>
<th>Sheep population size</th>
<th>Proportional allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laku Ingu</td>
<td>1214</td>
<td>226</td>
</tr>
<tr>
<td>Gitilo Dole</td>
<td>881</td>
<td>164</td>
</tr>
<tr>
<td>Total</td>
<td>2095</td>
<td>390</td>
</tr>
</tbody>
</table>
were collected directly from the rectum of each animal, using disposable plastic gloves and placed in clean screw capped plastic bottle. During every sampling, data on the location of the animal, age, sex and body condition score was recorded on a format prepared for this purpose. The samples were transported by ice box to Bako Agricultural Research Center, Animal Health Laboratory for coprological examinations; after labeling with animal ID, age, sex, body condition score and site where sample collected.

Carpological examination was performed to detect *Fasciola* eggs in the faeces by using the standard sedimentation technique described by [17]. During coprological examinations, samples were identified into positive and negative for Fasciola egg and results were registered. Samples that were not processed within 24 hours from collection were stored in a refrigerator at 4°C.

Study Methodology

Coprological Examination

Fresh fecal sample was collected directly from the rectum of each animal. Using disposable plastic gloves and placed in clean screw capped plastic bottle and each sample was clearly labeled with animal identification, place of collection, body condition score, sex and age of sheep. The collected fecal samples was placed in ice box and transported to the Bako Agricultural Research Center, Animal Health Laboratory for examination.

In laboratory the samples were processed by sedimentation technique and the eggs of Fasciola species was identified under compound microscope after staining the sample with 1% methyl blue [17]. To differentiate eggs of *Paramphistomum* and *Fasciola*, A drop of 1% methylene blue solution will be added to the Sediment. Eggs of *Fasciola* species showed yellowish Color while eggs of *Paramphistomum* species stain by Methylene blue [17].

Data Management and Statistical Analysis

All the data generated during sample collection and laboratory findings were entered and coded in Microsoft Excel 2010 program and were stored for statistical analysis. The data were analyzed using Statistical Package for Social Sciences (SPSS) software version20. The overall prevalence of fasciolois was calculated by dividing the total number of animals positive to the total number of animals examined. For inferential analysis multivariate logistic regression was used to assume on the level of strength of association of explanatory variables hypothesized with the outcome variable after calculating the odds ratio. A 95% confidence interval of the OR and p-values were used to describe statistical significance associations. The association is judged as significant when p-value is less than 0.05.

Results

From the total of 390 examined sheep for fasciolois through coprological examination 45.4% (177/390; 95% CI (40.41, 50.36)) were positive for Fasciola eggs. The logistic regression analyses of the risk factors indicated the presence of strong statistical association of fasciola infections with the body conditions (P=0.001) and animal age (P=0.032) while variables like animal location and sex are not significantly associated with the risk of acquiring *fasciola* infection.

The prevalence of ovine fasciolois recorded in both study sites (PAs) were 68 (41.5%) and 109 (48.2%) in Laku Ingu and Gitilo Dole, respectively. Although the prevalence rate 109 (48.2%) in Gitilo Dole was relatively higher than 68 (41.5%) in Laku Ingu. But, as indicated in table 2, no statistically significant difference P=0.102 (P > 0.05) was observed among the sites of sampled animals with the occurrence of ovine fasciolois.

The coprological examination revealed that the prevalence of ovine fasciolois was highest in sheep with poor body condition (57.9%) followed by medium body conditioned animals (43.5%) and good body conditioned (29.9%). Strong statistical association (P = 0.001) was observed between body condition scores and occurrence of ovine fasciolois (Table 2). Sheep with poor and medium body condition scores had 3.136 and 1.833 times more likelihood to harbor ovine fasciolois than sheep with good body condition score, respectively.

Based on the sex group the prevalence fasciolois was 38.8% and 47.6% in male and female respectively. Although the prevalence was relatively
higher in female; the differences in infection probability is not statistically significant (P=0.713). In regards to the age group of study animals, the prevalence was lower in young (37.2%), versus (49.8%) in adult indicating the OR of ovine fasciolosis to be 1.603 more likely in adult than the young age group as indicated in Table 2. Statistically significant difference (P=0.032) was observed among age groups with occurrence of ovine fasciolosis. Table 2

Discussion

Coprological examination of the fecal samples collected from 390 sheep revealed overall fasciolosis prevalence 45.4% (177/390; 95% CI (40.41, 50.36)). This is important because quantitative assessment. So, this disease provided good evidence to look for its economic burden. Accordingly, the present study revealed that ovine fasciolosis is found to be an important sheep disease in Horro sheep breed, community based breeding site at Horro district.

The result of the present study was relatively comparable to other workers in different region of country such as: [7] 49% prevalence in Kemissie; [18] 46.6% prevalence in and Around Motta Town; [19] 49% prevalence in Holeta; [20] 50.8% prevalence in and around Chole and [21] 48.21% prevalence in Debre Berhan Sheep Breeding and Forage Multiplication Center.

This result is higher when compared with previous findings of [22] 30.7% prevalence in Sherka Woreda Arsi; [4] 39.5% prevalence in Adigrat; [23] 33.85% prevalence in North Wollo. The variation in prevalence might be due to the presence of stagnated water bodies and marshy pasture land, agro-ecological factors like irrigation practices, husbandry (management) practice of ovine like freely grazing or tied, health care of animals.

However, this finding is lower than the previous studies conducted in upper Awash river basin by [24] 56.56% prevalence; in Jimma Rare by [13] 55.7% prevalence; in Menz Lalo Midir District by [25] 70.2% prevalence.

The coprological examination result showed the prevalence of ovine fasciolosis in the study animals at the site of Gitilo Dole was relatively higher than in the Table 2. Final multivariable logistic regression model output of factors associated with fecal shedding of fasciola eggs.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Categories</th>
<th>No</th>
<th>(Prevalence %)</th>
<th>OR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>Laku Ingu</td>
<td>164</td>
<td>68 (41.5%)</td>
<td>0.701</td>
<td>ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gitilo Dole</td>
<td>226</td>
<td>109 (48.2%)</td>
<td>(0.458, 1.073)</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>98</td>
<td>38 (38.8%)</td>
<td>0.911</td>
<td>ref.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>292</td>
<td>139 (47.6%)</td>
<td>(0.552, 1.501)</td>
<td>0.713</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Young</td>
<td>137</td>
<td>51 (37.2%)</td>
<td>ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>253</td>
<td>126 (49.8%)</td>
<td>1.603</td>
<td>(0.417, 1.018)</td>
<td>0.032</td>
</tr>
<tr>
<td>BCS</td>
<td>Poor</td>
<td>114</td>
<td>66 (57.9%)</td>
<td>3.136</td>
<td>(0.339, 0.891)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>209</td>
<td>91 (43.5%)</td>
<td>1.833</td>
<td>(0.161, 0.600)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>67</td>
<td>20 (29.9%)</td>
<td>ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>390</td>
<td>177 (45.4%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR= Odds Ratio, No= Number of animal examined, CI= Confidence Interval, ref=reference cell
Laku Ingu, however it was not statistically significant (P>0.05) (table 2). However, this minor difference might be the presence of a river and ponds in around the communal grazing land in Gitilo than in Laku. Similar differences due to the presence of water bodies were also observed by [19, 8 &18].

This study correlated that prevalence of ovine fasciolosis become high as the age of the sheep increase. In other word, the younger the age the lower the prevalence and the older the age the higher it will be (table 2). So, that significant difference in prevalence of ovine fasciolosis of different age group were observed (P<0.05).This is certainly because of that adult animal have repeatedly exposed to flukes infection than young’s. Related results have been reported by [20, [25] and [26]. This might be young animals are not usually allowed to go far with adults for grazing. So the chance of exposure to infective metacercaria was lower as compared with adult animals.

According to statistical analysis of infection rates on the basis of sex group, coprological prevalence of ovine fasciolosis was almost similar in female and male sheep in the study areas. This study supports the [27] reports, both sexes have been equally affected with fascioliosis and a higher prevalence of parasitic infection was not associated with sex (P> 0.05). The result also shares with [23]. The sex of sheep has no impact on the prevalence of fasciolosis. The sheep exposed to graze and parasitic infection with equal ratio. Sex did not show significant variation on the prevalence of Fasciola (table 2). Parallel finding was also shown by [28] and [29]. This might also be due to grazing of both sex groups in similar Fasciola contaminated pasture land have equal chance for infection.

In this coprological examination results showed that ,the highest prevalence observed in animals with poor body condition (54.4%) followed by medium body condition (43.1%); while the lowest was observed in cattle with good body condition (37.3%), in which the difference was statistically significant (table 2). In accord with our finding, [30]; [31] and [29] also reported, prevalence in poor body conditions higher than in good body conditions. This could be due to the fact that animals’ with poor body conditions are usually less resistant and are therefore susceptible to infectious diseases. This result indicates that fasciolosis causes reducing of body weight gains.

Conclusion and Recommendations

Fasciolosis is a major complication for sheep production and productivity by imposing remarkable direct and indirect losses at different parts of the country. The examination has investigated the high prevalence of ovine fasciolosis in reared sheep under extensive farming system in Laku Ingu and Gitilo Dole PAs, both member of community based Horro sheep breeding program at the site in Horro district of the Oromia regional state, western Ethiopia. This parasitic infection is distributed in many parts of the country and considered as one of the major obstacles to sheep production causing direct and indirect losses. The findings of this examination revealed that fasciolosis is still a health problem in the study area. Using communal grazing land for sheep with other livestock, presence of favorable conditions like marshy area, stagnant water bodies and poor management practices can facilitate the infectivity of the parasite in the area.

Acknowledgements

We would like to thank Jimma University College of Agriculture and Veterinary Medicine, for facility and financial support. We also thank Bako Agricultural Research Center providing us the required help during the study period. We also would like to express our sincere appreciation to the entire sheep owners who generously contributed to this study providing necessary information, time and their helping hands.

References

Research Report, Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia, Pp.31.

22. Yoseph Cherinet Megerssa, Tafa Bekele Jima,

